Water vapour distribution at urban scale using high-resolution numerical weather model and spaceborne SAR interferometric data

نویسندگان

  • E. Pichelli
  • R. Ferretti
  • D. Cimini
  • D. Perissin
  • M. Montopoli
  • F. S. Marzano
چکیده

The local distribution of water vapour in the urban area of Rome has been studied using both a high resolution mesoscale model (MM5) and Earth Remote Sensing-1 (ERS-1) satellite radar data. Interferometric Synthetic Aperture Radar (InSAR) techniques, after the removal of all other geometric effects, estimate excess path length variation between two different SAR acquisitions (Atmospheric Phase Screen: APS). APS are strictly related to the variations of the water vapour content along the radar line of sight. To the aim of assessing the MM5 ability to reproduce the gross features of the Integrated Water Vapour (IWV) spatial distribution, as a first step ECMWF IWV has been used as benchmark against which the high resolution MM5 model and InSAR APS maps have been compared. As a following step, the high resolution IWV MM5 maps have been compared with both InSAR and surface meteorological data. The results show that the high resolution IWV model maps compare well with the InSAR ones. Support to this finding is obtained by semivariogram analysis that clearly shows good agreement beside from a model bias.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mitigation of Atmospheric Water-vapour Effects on Spaceborne Interferometric SAR Imaging through the MM5 Numerical Model

Synthetic Aperture Radar (InSAR) imaging is a well established technique to derive useful products for several land applications. One of the major limitations of InSAR is due to atmospheric effects, and in particular to high water vapor variability. In this work, we make an experimental analysis to research the capability of Numerical Weather Prediction (NWP) models as MM5 to produce high resol...

متن کامل

Mitigation of atmospheric water-vapor effects on spaceborne Interferometric SAR imaging through the MM5 numerical model

Synthetic Aperture Radar (InSAR) imaging is a well established technique to derive useful products for several land applications. One of the major limitations of InSAR is due to atmospheric effects, and in particular to high water vapor variability. In this work we make an experimental analysis to research the capability of Numerical Weather Prediction (NWP) models as MM5 to produce high resolu...

متن کامل

Analyzing Terrasar-x and Cosmo-skymed High-resolution Sar Data of Urban Areas

The new high-resolution synthetic aperture radar (SAR) satellite systems offer new possibilities for urban remote sensing. COSMOSkyMed and TerraSAR-X operate in X-band and both can deliver data with a spatial resolution of up to one meter. High-resolution SAR data is particularly useful for post-disaster damage assessment and monitoring, because SAR systems operate (almost) weather independent....

متن کامل

Very High Resolution Parametric and Non- Parametric Sartomography Methods for Monitoring Urban Areas Structures

Synthetic Aperture Radar (SAR) is the only way to evaluate deformation of the Earth’s surface from space on the order of centimeters and millimeters due to its coherent nature and short wavelengths. Hence, by this means the long term risk monitoring and security are performed as precisely as possible. Traditional SAR imaging delivers a projection of the 3-D object to the two dimensional (2-D) a...

متن کامل

Combining SAR tomography and a PSI approach for high- resolution 3-D imaging of an urban area

Combining persistent scatterer interferometry (PSI) and SAR tomography approaches has the potential to overcome layover scenarios in urban areas and may thus increase the level of detail of differential interferometric measurements of displacements in such environments. In this paper, we report the current status and results of our efforts to integrate SAR tomography into an operational interfe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010